A thermostable endonuclease III homolog from the archaeon Pyrobaculum aerophilum.
نویسندگان
چکیده
Pyrimidine adducts in cellular DNA arise from modification of the pyrimidine 5,6-double bond by oxidation, reduction or hydration. The biological outcome includes increased mutation rate and potential lethality. A major DNA N:-glycosylase responsible for the excision of modified pyrimidine bases is the base excision repair (BER) glycosylase endonuclease III, for which functional homologs have been identified and characterized in Escherichia coli, yeast and humans. So far, little is known about how hyperthermophilic Archaea cope with such pyrimidine damage. Here we report characterization of an endonuclease III homolog, PaNth, from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100 degrees C. The predicted product of 223 amino acids shares significant sequence homology with several [4Fe-4S]-containing DNA N:-glycosylases including E.coli endonuclease III (EcNth). The histidine-tagged recombinant protein was expressed in E.coli and purified. Under optimal conditions of 80-160 mM NaCl and 70 degrees C, PaNth displays DNA glycosylase/ss-lyase activity with the modified pyrimidine base 5,6-dihydrothymine (DHT). This activity is enhanced when DHT is paired with G. Our data, showing the structural and functional similarity between PaNth and EcNth, suggests that BER of modified pyrimidines may be a conserved repair mechanism in Archaea. Conserved amino acid residues are identified for five subfamilies of endonuclease III/UV endonuclease homologs clustered by phylogenetic analysis.
منابع مشابه
Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum.
The nitrate reductase of the hyperthermophilic archaeon Pyrobaculum aerophilum was purified 137-fold from the cytoplasmic membrane. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the enzyme complex consists of three subunits with apparent molecular weights of 130,000, 52,000, and 32,000. The enzyme contained molybdenum (0.8-mol/mol complex), iron (15.4-mol/mol comp...
متن کاملCharacterization of a thermostable DNA glycosylase specific for U/G and T/G mismatches from the hyperthermophilic archaeon Pyrobaculum aerophilum.
U/G and T/G mismatches commonly occur due to spontaneous deamination of cytosine and 5-methylcytosine in double-stranded DNA. This mutagenic effect is particularly strong for extreme thermophiles, since the spontaneous deamination reaction is much enhanced at high temperature. Previously, a U/G and T/G mismatch-specific glycosylase (Mth-MIG) was found on a cryptic plasmid of the archaeon Methan...
متن کاملDirect interaction between uracil-DNA glycosylase and a proliferating cell nuclear antigen homolog in the crenarchaeon Pyrobaculum aerophilum.
Proliferating cell nuclear antigen (PCNA) acts as a sliding clamp on duplex DNA. Its homologs, present in Eukarya and Archaea, are part of protein complexes that are indispensable for DNA replication and DNA repair. In Eukarya, PCNA is known to interact with more than a dozen different proteins, including a human major nuclear uracil-DNA glycosylase (hUNG2) involved in immediate postreplicative...
متن کاملThe multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity.
The multicopper oxidase from the hyperthermophilic archaeon Pyrobaculum aerophilum (McoP) was overproduced in Escherichia coli and purified to homogeneity. The enzyme consists of a single 49.6 kDa subunit, and the combined results of UV-visible, CD, EPR and resonance Raman spectroscopies showed the characteristic features of the multicopper oxidases. Analysis of the McoP sequence allowed its st...
متن کاملAmylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels.
Amylomaltases are 4-alpha-glucanotransferases (EC 2.4.1.25) of glycoside hydrolase family 77 that transfer alpha-1,4-linked glucans to another acceptor, which can be the 4-OH group of an alpha-1,4-linked glucan or glucose. The amylomaltase-encoding gene (PAE1209) from the hyperthermophilic archaeon Pyrobaculum aerophilum IM2 was cloned and expressed in Escherichia coli, and the gene product (Py...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 29 3 شماره
صفحات -
تاریخ انتشار 2001